
1

CPSC 410--Richard Furuta 4/11/00 1

Silberschatz, et al.
Topics based on Chapter 17

Distributed File Systems

CPSC 410--Richard Furuta 4/11/00 2

Distributed File Systems

• Naming and Transparency

• Remote File Access

• Stateful versus Stateless Service

• File Replication

CPSC 410--Richard Furuta 4/11/00 3

Terminology

• Distributed file system (DFS): a distributed
implementation of the classical time-sharing
model of a file system, where multiple users share
files and storage resources.
– A DFS manages sets of dispersed storage devices.
– Overall storage space managed by a DFS is composed

of different, remotely located, smaller storage spaces.
– There is usually a correspondence between constituent

storage spaces and sets of files.

CPSC 410--Richard Furuta 4/11/00 4

Terminology

• Service – software entity running on one or more machines
and providing a particular type of function to a priori
unknown clients.

• Server – service software running on a single machine.
• Client – process that can invoke a service using a set of

operations that forms its client interface.
– A client interface for a file service is formed by a set of primitive

file operations (create, delete, read, write).
– Client interface of a DFS should be transparent, i.e., not distinguish

between local and remote files.

• Key performance measure: time to satisfy service requests

CPSC 410--Richard Furuta 4/11/00 5

Naming and Transparency

• Naming – mapping between logical and physical objects.
– Example: file names versus physical blocks of data stored on data

tracks

• Multilevel mapping – abstraction of a file that hides the
details of how and where on the disk the file is actually
stored.

• A transparent DFS hides the location where in the network
the file is stored.
– For a file being replicated in several sites, the mapping returns a set

of the locations of this file’s replicas; both the existence of multiple
copies and their location are hidden.

CPSC 410--Richard Furuta 4/11/00 6

Naming Structures

• Location transparency – file name does
not reveal the file’s physical storage
location.
– File name still denotes a specific, although

hidden, set of physical disk blocks.

– Convenient way to share data.

– Can expose correspondence between
component units and machines.

2

CPSC 410--Richard Furuta 4/11/00 7

Naming Structures

• Location independence – file name does
not need to be changed when the file’s
physical storage location changes.
– Better file abstraction.

– Promotes sharing the storage space itself.

– Separates the naming hierarchy from the
storage-devices hierarchy.

CPSC 410--Richard Furuta 4/11/00 8

Naming Structures

• Location independence can map same file
name to different locations at different times

• Location independence is a stronger
property than is location transparency

• However most current DFSs provide
location transparency but not file migration;
hence location independence is not relevant

CPSC 410--Richard Furuta 4/11/00 9

Naming Structures

• Separation of name and location enables diskless clients
– rely on servers to provide all files, including the operating system

kernel

– booting requires boot protocol, stored in ROM, and the kernel or
boot code stored in a fixed location

– diskless client advantages: lower cost (diminishing return with
lower cost disks), less noise, easier to upgrade OS (update server
copy)

– diskless client disadvantages: added complexity of local protocols;
performance loss resulting from use of network, rather than disk.

CPSC 410--Richard Furuta 4/11/00 10

Naming Schemes

• Three main approaches to naming
– host name, local name combination

– attaching remote directories to local directories

– single global name structure

CPSC 410--Richard Furuta 4/11/00 11

Naming Schemes:
host name/local name

• Files named by a combination of their host
name and local name

• Guarantees a unique system-wide name

• Example (as in rcp): host:localname
– dilbert:myfile.txt

– dilbert:/etc/hosts

CPSC 410--Richard Furuta 4/11/00 12

Naming Schemes:
attach remote directory to local

• Gives the appearance of a coherent directory tree

• Automount feature
– mounts occur on-demand based on a table of mount

points and file structure names

– previously, remote directories had to be mounted in
advance

– examples include NFS

– issues: what to do if remote directory is (or becomes)
inaccessible? Which machines are allowed to mount
directory?

3

CPSC 410--Richard Furuta 4/11/00 13

Naming Schemes:
total integration

• A single global name structure spans all the
files in the system.

• If a server is unavailable; some arbitrary set
of directories on different machines also
becomes unavailable.

• Special files (e.g., device files and other
machine specific files) make true
isomorphism difficult

CPSC 410--Richard Furuta 4/11/00 14

Remote File Access

• Remote-service mechanism to satisfy user requests
for access to remote files.

• Analogy between remote service in a DFS
(perhaps implemented by RPC) and local service
– remote service method analogous to performing a disk

access for each access request

• Caching: improve performance by reducing both
network traffic and also disk I/O

CPSC 410--Richard Furuta 4/11/00 15

Remote File Access
Caching

• Reduce network traffic by retaining recently
accessed disk blocks in a cache, so that repeated
accesses to the same information can be handled
locally.
– If needed data not already cached, a copy of data is

brought from the server to the user.

– Accesses are performed on the cached copy.
– Replacement policy keeps cache size bounded.
– Files identified with one master copy residing at the

server machine, but copies of (parts of) the file are
scattered in different caches.

CPSC 410--Richard Furuta 4/11/00 16

Remote File Access:
Caching

• Cache-consistency problem – keeping the
cached copies consistent with the master
file.

CPSC 410--Richard Furuta 4/11/00 17

Remote File Access:
Cache Location

• Cached data can be stored on disk or in
memory.

• In practice, though, many are hybrids.

• Advantages of disk caches
– More reliable.

– Cached data kept on disk are still there during
recovery and don’t need to be fetched again.

CPSC 410--Richard Furuta 4/11/00 18

Remote File Access:
Cache Location

• Advantages of main-memory caches:
– Permit workstations to be diskless.
– Data can be accessed more quickly.
– Performance speedup in bigger memories.

– Server caches (used to speed up disk I/O) are in main
memory regardless of where user caches are located;
using main-memory caches on the user machine
permits a single caching mechanism for servers and
users since server caches (e.g., to speed up disk I/O)
will be in main memory.

4

CPSC 410--Richard Furuta 4/11/00 19

Remote File Access:
Cache Update Policy

• Write-through – write data through to disk as soon as they are placed
on any cache. Reliable, but poor performance.

• Delayed-write – modifications written to the cache and then written
through to the server later. Write accesses complete quickly; some data
may be overwritten before they are written back, and so need never be
written at all.
– Poor reliability; unwritten data will be lost if a user machine crashes
– Variation – write modified data blocks when ejecting from client’s cache.

However, some blocks may reside in cache a long time.
– Variation – scan cache at regular intervals and flush blocks that have been

modified since the last scan.

– Variation – write-on-close, writes data back to the server when the file is
closed. Best for files that are open for long periods and frequently
modified.

CPSC 410--Richard Furuta 4/11/00 20

Remote File Access:
Consistency

• Is locally cached copy of the data consistent with the
master copy?

• Client-initiated approach
– Client initiates a validity check.

– Server checks whether the local data are consistent with the master
copy.

– May load network and server.

• Server-initiated approach
– Server records, for each client, the (parts of) files it caches.
– When server detects a potential inconsistency, it must react (for

example, notification)

CPSC 410--Richard Furuta 4/11/00 21

Remote File Access:
Comparing Caching and Remote Service
• In caching, many remote accesses handled efficiently by

the local cache; most remote accesses will be served as fast
as local ones.

• Servers are contacted only occasionally in caching (rather
than for each access).
– Reduces server load and network traffic.
– Enhances potential for scalability.

• Remote server method handles every remote access across
the network; penalty in network traffic, server load, and
performance.

CPSC 410--Richard Furuta 4/11/00 22

Remote File Access:
Comparing Caching and Remote Service

• Total network overhead in transmitting big chunks
of data (caching) is lower than a series of
responses to specific requests (remote-service).

• Caching is superior in access patterns with
infrequent writes.

• With frequent writes, substantial overhead
incurred to overcome cache-consistency problem.

CPSC 410--Richard Furuta 4/11/00 23

Remote File Access:
Comparing Caching and Remote Service
• Benefit from caching when execution carried out on

machines with either local disks or large main memories.
• Remote access on diskless, small-memory-capacity

machines should be done through remote-service method.
• In caching, the lower inter-machine interface is different

from the upper user interface (data transferred en masse
between server and client)

• In remote-service, the inter-machine interface mirrors the
local user-file-system interface (data transferred in
response to client’s request)

CPSC 410--Richard Furuta 4/11/00 24

Stateful and Stateless File
Service

• Stateful file service: server tracks each file
being accessed by each client

• Stateless file service: server simply provides
blocks as they are requested by the client
without knowledge of the blocks’ use

5

CPSC 410--Richard Furuta 4/11/00 25

Stateful File Service

• Mechanism.
– Client opens a file.
– Server fetches information about the file from its disk,

stores it in its memory, and gives the client a
connection identifier unique to the client and the open
file.

– Identifier is used for subsequent accesses until the
session ends.

– Server must reclaim the main-memory space used by
clients who are no longer active.

CPSC 410--Richard Furuta 4/11/00 26

Stateful File Service

• Increased performance.
– Fewer disk accesses because file information is

cached in main memory.

– Stateful server knows if a file was opened for
sequential access and can thus read ahead the
next blocks.

• Key point: main-memory information is
kept by a server about its clients

CPSC 410--Richard Furuta 4/11/00 27

Stateless File Server

• Avoids state information by making each
request self-contained.

• Each request identifies the file and position
in the file.

• No need to establish and terminate a
connection by open and close operations.

CPSC 410--Richard Furuta 4/11/00 28

Distinctions between Stateful and
Stateless Service

• Failure Recovery.
– A stateful server loses all its volatile state in a crash.

• Restore state by recovery protocol based on a dialog with
clients, or abort operations that were underway when the crash
occurred.

• Server needs to be aware of client failures in order to reclaim
space allocated to record the state of crashed client processes
(orphan detection and elimination).

– With stateless server, the effects of server failures and
recovery are almost unnoticeable. A newly reincarnated
server can respond to a self-contained request without
any difficulty.

CPSC 410--Richard Furuta 4/11/00 29

Distinctions between Stateful and
Stateless Service

• Penalties for using the robust stateless service:
– longer request messages
– slower request processing
– additional constraints imposed on DFS design

• each request identifies the target file so a uniform, system-
wide, low-level naming scheme is required

• client operations must be idempotent since they may be
retransmitted

– idempotent: each operation has the same effect and produces the
same output if executed several times consecutively

CPSC 410--Richard Furuta 4/11/00 30

Distinctions between Stateful and
Stateless Service

• Some environments require stateful service.
– A server employing server-initiated cache

validation cannot provide stateless service,
since it maintains a record of which files are
cached by which clients.

– UNIX use of file descriptors and implicit
offsets is inherently stateful; servers must
maintain tables to map the file descriptors to
inodes, and store the current offset within a file.

6

CPSC 410--Richard Furuta 4/11/00 31

File Replication

• Replicas of the same file on different machines
– Failure-independent machines (i.e., availability of one replica is

independent from availability of others)

– Improves availability
– Can shorten service times

• Naming scheme maps a replicated file name to a particular
replica.
– Existence of replicas should be invisible to higher levels.
– Replicas must be distinguished from one another by different

lower-level names.

CPSC 410--Richard Furuta 4/11/00 32

File Replication

• Updates – replicas of a file denote the same
logical entity, and thus an update to any
replica must be reflected on all other
replicas.

• Demand replication – reading a non-local
replica causes it to be cached locally,
thereby generating a new non-primary
replica.

