
1

CPSC 410--Richard Furuta 3/20/00 1

Silberschatz, et al.
Topics based on Chapter 12

I/O Systems

CPSC 410--Richard Furuta 3/20/00 2

Topic overview

• I/O Hardware

• Application I/O Interface

• Kernel I/O Subsystem

• Transforming I/O requests to hardware
operations

• Performance

Topics in this chapter review and extend
material discussed earlier

2

CPSC 410--Richard Furuta 3/20/00 3

I/O hardware

• Conflicting trends in I/O devices:
– Standardized software and hardware interfaces

– Wide variety of hardware devices, some providing
unique resources

• Device driver modules
– Provide uniform device access interface to the I/O

subsystem

– Analogous to system calls, which provide a standard
interface between application and operating system

CPSC 410--Richard Furuta 3/20/00 4

I/O hardware

• Common concepts
– Port

• connection point

– Bus
• common set of wires and protocol

• daisy chain (A to B to C to computer) or shared direct access

– Controller
• operates port, bus, or a device

• host adapter: separate circuit board that plugs into computer.
Generally contains processor, microcode, some private
memory

3

CPSC 410--Richard Furuta 3/20/00 5

I/O hardware

• Controller has one or more registers for data and
control signals

• Processor communicates with controller by
reading and writing these registers
– Specified through use of I/O instructions

• Direct I/O instructions: Device registers are separate;
instructions transfer byte or word to I/O port address

• Memory-mapped I/O: device control registers mapped into
memory space of the processor (e.g., screen memory)

CPSC 410--Richard Furuta 3/20/00 6

I/O hardware

• I/O port registers
– status

• bits that are readable by host (e.g., current command has
completed, byte ready to be read, device error has occurred)

– control
• written by host to start command or change device mode (e.g.,

full-duplex and half-duplex communications for serial device)

– data-in
• read to get input

– data-out
• written to send output

4

CPSC 410--Richard Furuta 3/20/00 7

I/O hardware: Polling

• Determines state of device
– command-ready bit in control register

– busy bit in status register

– error bit in status register

• Busy-wait cycle to wait for I/O from device

CPSC 410--Richard Furuta 3/20/00 8

I/O hardware: Polling
Example of writing output

• Host repeatedly reads busy bit until that bit becomes clear
(busy waiting or polling here)

• Host sets write bit in control register and writes byte into
data-out register

• Host sets command-ready bit in control register

• When controller detects command-ready bit, sets busy bit

• Controller reads command register and sees write bit.
Reads data-out register to get the byte and performs I/O to
the device

• Controller clears command-ready, error (command
succeeded), and busy (controller finished)

5

CPSC 410--Richard Furuta 3/20/00 9

I/O hardware: interrupts

• CPU Interrupt request line triggered by I/O device
(sensed after executing every instruction)

• Interrupt handler receives interrupts; return from
interrupt instruction returns CPU to state prior to
interrupt

• Terminology:
– device controller raises interrupt

– CPU catches interrupt and dispatches to the interrupt
handler

– Interrupt handler clears interrupt after servicing

CPSC 410--Richard Furuta 3/20/00 10

I/O hardware: interrupts

• CPUs have two interrupt request lines: maskable
and nonmaskable
– Maskable to ignore or delay some interrupts

• Interrupt vector (offset in table) to dispatch
interrupt to correct handler
– Based on priority: defers low-priority interupts to

higher-priority ones

– Some unmaskable

• Interrupt mechanism also used for exceptions
(e.g., divide by zero)

6

CPSC 410--Richard Furuta 3/20/00 11

Interrupt-driven I/O cycle

CPSC 410--Richard Furuta 3/20/00 12

Direct Memory Access

• Used to avoid programmed I/O for large data movement
– programmed I/O: CPU transfers data to/from device one byte at a

time, watching status bits, etc.

• Requires DMA controller

• Bypasses CPU to transfer data directly between I/O device
and memory
– DMA command block contains pointer to source of transfer,

pointer to destination of transfer, number of bytes to be transferred

– DMA controller manages transfer, communicating with device
controller, while CPU carries out other work. Cycle stealing
(DMA controller seizes memory bus) can slow down CPU.

– DMA controller interrupts CPU at conclusion of transfer

7

CPSC 410--Richard Furuta 3/20/00 13

Steps in DMA transfer

CPSC 410--Richard Furuta 3/20/00 14

Application I/O interface

• Generalized device interfaces implemented by device
drivers (for specific devices)
– Abstraction, encapsulation, software layering

• Devices vary in many dimensions
– Data transfer mode: character/block

– Access method: sequential/random

– Transfer schedule: synchronous/asynchronous

– Sharing: sharable/dedicated

– Speed of operation: latency/seek time/transfer rate/delay between
operations

– I/O direction: read/write/read-write

8

CPSC 410--Richard Furuta 3/20/00 15

Application I/O interface

• Major access conventions for device access
– block I/O

– character-stream I/O

– memory-mapped file access

– network sockets

• Escape or back-door system calls
– transparently pass arbitrary commands to device driver

– Unix ioctl (I/O ConTroL)

CPSC 410--Richard Furuta 3/20/00 16

Application I/O interface:
Block and Character Devices

• Block devices include disk drives
– Commands include read, write, seek

– Raw I/O or file-system access (access device as a
simple linear array of blocks)

– Memory-mapped file access possible (operations are as
if reading/writing to memory)

• Character devices include keyboards, mice, serial
ports
– Commands include get, put (character at a time)

– Libraries layered on top allow line editing

9

CPSC 410--Richard Furuta 3/20/00 17

Application I/O interface:
Network devices

• Varying enough from block (read-write-seek) and
character (get-put) to have own interface

• Unix and Windows/NT include socket interface
– Applications can create sockets, connect local socket to remote

address, listen for remote applications to connect to local socket,
send and receive packets over the connection

– Separates network protocol from network operations

– Includes select functionality; which sockets have a packet waiting
and which have room to accept a packet to be set

• Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

CPSC 410--Richard Furuta 3/20/00 18

Application I/O interface:
Clocks and timers

• Provide current time, elapsed time, timer to
trigger operation X at time T

• programmable interval timer used for
timings, periodic interrupts
– waits for specified time and then generates an

interrupt (once or many times)

• ioctl (on UNIX) covers odd aspects of I/O
such as clocks and timers

10

CPSC 410--Richard Furuta 3/20/00 19

Application I/O interface:
Blocking and nonblocking I/O

• Blocking - process suspended until I/O completed
– Easy to use and understand

– Insufficient for some needs

• Nonblocking - I/O call returns as much as available
– User interface, data copy (buffered I/O)

– Implemented via multi-threading

– Returns quickly with count of bytes read or written

• Asynchronous - process runs while I/O executes
– Difficult to use

– I/O subsystem signals process when I/O completed either by
setting a variable, with a software interrupt, with a callback
routine, etc.

CPSC 410--Richard Furuta 3/20/00 20

Kernel I/O subsystem

• Scheduling
– Rearranging the order of service with goal of

improving overall system performance (see
Chapter 13)

– Some I/O request ordering via per-device queue

– Some OSs try fairness

11

CPSC 410--Richard Furuta 3/20/00 21

Kernel I/O subsystem

• Buffering - store data in memory while transfering
between devices
– To cope with device speed mismatch

• Example: double buffering; write one while transferring other

– To cope with device transfer size mismatch
• Example: fragmentation and reassembly of (relatively small-

sized) network packets

– To maintain “copy semantics”
• Example: with DMA, what happens if an application changes

the memory copy before a write completes? Here, application
data is copied into a kernel buffer before returning control to
application

CPSC 410--Richard Furuta 3/20/00 22

Kernel I/O subsystem

• Caching - fast memory holding copy of data
– Always just a copy

– Key to performance (see Chapter 17)

12

CPSC 410--Richard Furuta 3/20/00 23

Kernel I/O subsystem

• Spooling - holds output for a device
– If device can serve only one request at a time

– Example: Printing

• Device reservation - provides exclusive
access to a device
– System calls for allocation and deallocation

– May be left up to application to watch out for
deadlock

CPSC 410--Richard Furuta 3/20/00 24

Kernel I/O subsystem

• Error handling
– OS can recover from disk read, device

unavailable, transient write failures
• Example: read retry, network resend, etc.

– Permanent device failures require notification
• Most return an error number or code when I/O

request fails

• System error logs hold problem reports

• Example: Unix errno variable

13

CPSC 410--Richard Furuta 3/20/00 25

Kernel I/O subsystem

• Kernel data structures
– Kernel keeps state info for I/O components,

including open file tables, network connections,
character device state

• Many, many complex data structures to track
buffers, memory allocation, “dirty” blocks

• Some use object-oriented methods and message
passing to implement I/O

CPSC 410--Richard Furuta 3/20/00 26

Transforming I/O requests to
hardware operations

• Consider reading a file from disk for a
process
– Determine device holding file

– Translate name to device representation

– Physically read data from disk into buffer

– Make data available to requesting process

– Return control to process

14

CPSC 410--Richard Furuta 3/20/00 27

Blocking I/O request

CPSC 410--Richard Furuta 3/20/00 28

Performance

• I/O a major factor in system performance
– Demands CPU to execute device driver, kernel

I/O code

– Context switches due to interrupts (switches
necessary to execute the interrupt handler and
to restore state)

– Data copying

– Network traffic especially stressful (see
example on next slide)

15

CPSC 410--Richard Furuta 3/20/00 29

Performance: Intercomputer
communications

CPSC 410--Richard Furuta 3/20/00 30

Improving performance

• Reduce number of context switches

• Reduce data copying

• Reduce interrupts by using large transfers,
smart controllers, polling

• Use DMA

• Balance CPU, memory, bus, and I/O
performance for highest throughput

16

CPSC 410--Richard Furuta 3/20/00 31

Implementation tradeoffs

• Application level implementation
– more flexible, less likely to cause system crashes

– inefficient because of context switch overhead, layers of abstraction

• Kernel implementation
– can improve performance

– more challenging to implement

– greater debugging needed to avoid data corruption and system crashes

• Hardware implementation
– highest performance

– difficult and expensive to make further improvements or bug fixes

– increased development time (months vs days)

– decreased flexibility (e.g., can’t necessarily take advantage of knowledge
in the kernel)

