
CPSC 410-Richard Furuta

01/19/99 1

CPSC 410--Richard Furuta 1/15/00 1

Silberschatz and Galvin

Chapter 1

Introduction

CPSC 410--Richard Furuta 1/15/00 2

Chapter Overview

• What is an operating system?

• History of operating systems
– structure

– tradeoffs

CPSC 410-Richard Furuta

01/19/99 2

CPSC 410--Richard Furuta 1/15/00 3

What is an Operating System?

• Computer system: hardware, operating
system, application programs, users

• Computer hardware: von Neumann
architecture: CPU, memory, input/output

• Applications programs: compilers,
assemblers, text editors, utilities, etc....

• Operating system: interface between
hardware and applications programs

CPSC 410--Richard Furuta 1/15/00 4

Von Neumann Architecture

(From Bic and Shaw)

CPU
Data bus

Address bus

Main
Memory

Controller Controller

User

I/O Subsystem

CPSC 410-Richard Furuta

01/19/99 3

CPSC 410--Richard Furuta 1/15/00 5

CPSC 410--Richard Furuta 1/15/00 6

Operating System Definitions

• Resource allocator--manages and allocates
resources

• Control program--controls the execution of
user programs and operation of I/O devices

• Kernel--the one program running at all
times (all else being application programs)

CPSC 410-Richard Furuta

01/19/99 4

CPSC 410--Richard Furuta 1/15/00 7

Operating System

• OS balances conflicting needs of users and
programs. Coordinator. Permits multiple
activities to coexist in efficient and fair manner.
Implements “policy” based on assumptions

– Is hardware cheap or expensive?

– Interactive response time vs. wall clock time

– Protect users or facilitate sharing?

• How encompassing is OS? Kernel concept. Is
CLI in OS?

CPSC 410--Richard Furuta 1/15/00 8

Historical Overview

• Early assumption
– Hardware (very!) expensive and rare when

compared to people time

– Goal: make more efficient use of hardware
even at expense of personal productivity

• Modern assumption
– Hardware cheap. People are expensive.

CPSC 410-Richard Furuta

01/19/99 5

CPSC 410--Richard Furuta 1/15/00 9

1940’s: No operating system

• Programmer writes in machine language,
enters program directly (e.g., switches),
operates computer

• Dedicated computer and peripherals;
programmer=operator

• Different environments for different tasks.

• Manual scheduling. Organizational factors

• Perhaps have common subroutine library

CPSC 410--Richard Furuta 1/15/00 10

1950’s: Simple batch processing

• Programmer <> Operator

• Resident monitor (computer program): load and
run, dump if exception

• “Batching” jobs (“automatic job sequencing”)

• JCL (Job Control Language)

• One job at a time but maximize hardware use: off-
line operation, buffering, interrupt handling,
spooling, job scheduling (e.g., by time, subsystem,
etc..)

CPSC 410-Richard Furuta

01/19/99 6

CPSC 410--Richard Furuta 1/15/00 11

JCL (Job Control Language)
OS/360

//QUESTNAR JOB (204121),MARCO.POLO,MSGLEVEL=1
// EXEC ASMFCG
//ASM.SYSIN DD *

Program to be assembled
/*
//GO.OBJECT DD DSNAME=USERLIB,DISP=OLD
// DD *

Object deck of subroutine
/*
//GO.SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=133)
//GO.INDATA DD DISP=OLD,UNIT=TAPE9,
// DSNAME=QUEST214,VOLUME=SER=102139
//GO.SYSIN DD *

Data cards, perhaps control cards for the program
/*

CPSC 410--Richard Furuta 1/15/00 12

Off-line operation

• Load jobs into memory from tapes, not
directly from cards

• Tape units are faster than card readers

• Application programs act as before

• Possible to use multiple reader-to-tape and
tape-to-printer systems for one CPU

CPSC 410-Richard Furuta

01/19/99 7

CPSC 410--Richard Furuta 1/15/00 13

Off-line operation

CPSC 410--Richard Furuta 1/15/00 14

Early 1960’s: Multiprogramming
and multiprocessing

• Multiprogramming: several users share system at
same time

– batched: keep CPU busy by switching in other
work when idle (e.g., waiting for I/O)

• Multitasking (timesharing): frequent switches to
permit interactive use (extension of
multiprogramming)

• Multiprocessing: several processors are used on a
single system

CPSC 410-Richard Furuta

01/19/99 8

CPSC 410--Richard Furuta 1/15/00 15

Spooling

• Overlaps I/O of one job with computation
of another job.

• While executing a job, the OS
– Reads next job from card reader into storage

area on disk (job queue)

– Outputs printout of previous job from disk to
printer

• Issue: what job to select to run next?

CPSC 410--Richard Furuta 1/15/00 16

Spooling

CPSC 410-Richard Furuta

01/19/99 9

CPSC 410--Richard Furuta 1/15/00 17

Mid-1960’s to mid-1970’s:
General purpose systems

• Large and expensive (e.g., OS/360)

– 100k’s of lines of code

– hundreds to thousands of development man-
years

– complex, asynchronous, ideosyncratic to
specific hardware

– never completely debugged (1000’s of release
bugs)

– hard to predict behavior, requires guesswork

CPSC 410--Richard Furuta 1/15/00 18

Mid-1960’s to mid-1970’s

• OS begins to be treated as subject area
– formerly collection of individual problems

– basic concepts becoming standardized;
theoretical underpinnings developed

– research: concurrency, protection, scheduling
(e.g., avoid thrashing), portability,
maintainability (e.g., kernels)

– research systems (e.g., Project MAC, THE)

CPSC 410-Richard Furuta

01/19/99 10

CPSC 410--Richard Furuta 1/15/00 19

Mid 1970’s to present

• Cheap hardware, very expensive people

• OS in support of single user or small group of
cooperating users

• Single process support evolves to multiple process
support

• Device independent standards; commercial,
defacto, and formal (MS-DOS, Unix, POSIX, etc.)

• Support for window packages, etc.

CPSC 410--Richard Furuta 1/15/00 20

Two interesting special cases

• Distributed systems

– tightly coupled (shared memory and clock) vs.
loosely coupled (distributed)

– issues of resource sharing, load sharing,
reliability, communication

• Real-time systems

– obligation to complete processing to meet
defined constraints. Often conflicts with
timesharing

